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Theorem 0.1

If f is differentiable over (a,b) and f has a maximum or minimum value at
¢ € (a,b) then f'(c) = 0.

Proof

If f has a maximum at ¢ then f(z) < f(¢), Vz € (a,b) = f(x)— f(c) <0,Vx €

(a,0).
Since ¢ € (a,b) there is x € (a,b) with z < c and = > ¢.
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ie f'(e) =0.

If f has a minimum at ¢ then f(x) > f(c), Vz € (a,b0) = f(z) — f(c) > 0,Vz €

(a,b).
Since ¢ € (a, b) there is z € (a,b) with x < c and = > c.
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Therefore since, hinw exists we must have
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ie f'(c) = 0.
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We can combine this result with the theorems on boundedness and continuity
to solve some max/min problems.

Example 0.2
. . .. . 3z +4
Determine the maximum and minimum value respectively of 211 over
x
[—2,2]. Justify your answers.

3z +4 . )

s continuous over [—2, 2] because 3x+4 and %+ 1
x

are both polynomials and so are continuous at every point of R and 2 +1 # 0.
It follows then from the boundedness properties of continuous functions that

The function f(z) =

f(x) has a maximum and a minimum value in [-2, 2].

3z +4

Now f(x) = ——— is also differentiable everywhere and so if a max or a min
x2+1

occurs at some point ¢ € (—2,2) then, according to the theorem that we have
just proved above, we must have f'(¢) = 0.

It follows then the max and min value either occur at an end-point of the in-
terval or at some point ¢ € (—2,2) such that f'(c) = 0.

If we look for all points ¢ in (-2,2) at which f'(¢) = 0 we can compare the
values of f at these points and at the end-points in order to find the max and
min values of f(z).
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Therefore we compare the values f(—2) = —0.4, f (%) =5.4,f(2)=2.
We conclude then that 5.4 is the maximum value and —0.4 is the minimum
value of f over [-2,2].



